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A model of airflow over a mountain is treated mathematically in this paper. The 
fluid is inviscid, incompressible and of variable density. The flow is in a long 
channel, bounded above by a rigid horizontal lid and below by an obstacle. The 
variation with height of the horizontal velocity and of the density is specified far 
upstream. The details of flow are examined for particular conditions upstream 
which lead to a linear vorticity equation, although the non-linear inertial terms 
in the Euler equations of motion are exactly represented. In  this case the flow is 
described by the superposition of solutions of some diffraction problems. Classical 
techniques of diffraction theory are then used to demonstrate the existence and 
some general properties of solutions for steady flow. Thus a steady solution is 
always possible if no restriction is placed on the amount of energy available to 
drive the flow, that is to say there is no critical internal Froude number (measur- 
ing the dynamical effect of buoyancy) for the existence of a steady flow. Finally 
the flows past a dipole and a vertical wall are computed. 

1. Introduction 
In  a series of papers Long (1953, 1954, 1955) discussed the steady two- 

dimensional flow of a horizontal stream of variable speed and density over an 
obstacle. He supposed the fluid inviscid and incompressible. In  particular, Long 
proved that for certain variations with height of the speed and density in the 
incident stream1 the governing partial differential equation becomes the reduced 
wave equation, i.e. Helmholtz’s equation. This important discovery made 
possible exact analysis of stratified flow over obstacles of finite height, though 
difficulties familiar in diffraction theory make computations non-trivial. More- 
over, a vital difference from diffraction theory arises from the boundary condi- 
tions at  large distances from the obstacle. Long assumed, though this has not 
been universally accepted (cf. Trustrum 1964), that the horizontal flow is un- 
disturbed far upstream of the obstacle. This ‘lee-wave’ condition replaces the 
familiar radiation condition and prevents direct application of diffraction theory. 

t Present address : Department of Mathematics, Imperial College, London. 
$ More distributions which lead to linear equations such as the reduced wave equation 

have been found by Long (1958) and Yih (1960). 
23 Fluid Meoh. 28 
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Previous workers, following Long, have used an inverse method by which they 
constructed solutions and then replaced suitable streamlines by obstacles. This 
method has the drawback that the obstacle obtained depends on the stratifica- 
tion of the incident stream, so that one cannot study the dependence on the 
stratification of the disturbance due to a given obstacle. Further, it  is not clear 
that the flow round any given obstacle with given stratification can be con- 
structed in this way, even in principle. 

It seems desirable to modify the powerful computational methods of diffrac- 
tion theory to find flows over specific obstacles. This is particularly important 
when the stratification is not small, for then it is difficult even to approximate the 
desired profile of an obstacle. When these computational methods are inadequate, 
it is useful to argue about the existence and general properties of solutions for 
flow over an obstacle by appeal to the well-known physics of diffraction theory. 
Indeed, the analogy between flow over an obstacle and diffraction theory might 
lead to some acoustic or radio experiment to model airflow over a mountain. 

Long (1955) questioned the existence of solutions, suggesting that if the strati- 
fication exceeded a certain critical value then solutions free of upstream waves 
could occur only for sufficiently small obstacles. Thus for larger obstacles the 
disturbance might extend far upstream. In  effect, Long proposed that intense 
stratification may give rise to ‘blocking ’ of the flow below the top of the obstacle. 
This contrasts with the idea of Sheppard (1956), who used Bernoulli’s theorem to 
suggest that blocking would occur if the incident stream had insufficient energy. 
The idea of blocking has been further examined by Yih (1959) for two-dimensional 
flow, and by Drazin (1961) for three-dimensional flow. 

In  @ 2 , 3  we define the model and state the equation of motion and the bound- 
ary conditions. The problem for any given obstacle of finite height is treated 
generally in $4. We reduce the problem to an equivalent set of problems of 
classical diffraction theory in a wave-guide. Our arguments suggest, in contra- 
diction to Long’s, that the problem is well posed except for an enumerable infinity 
of cases of ‘resonance ’. In  Q 5 the particular case of a line dipole on the bed of the 
channel is treated. The solution is not for various incident streams past a pre- 
scribed obstacle, but it has the merit of simplicity. An explicit analytic solution 
is found, which gives an explicit expression for the wave-drag and facilitates 
computation of the streamlines. The more important problem of prescribing an 
obstacle and then, for all values of the internal Froude number of the incident 
stream, determining the flow is solved in $6 for a particular simple obstacle, 
namely the vertical strip. The analysis is numerical. In  $ 7  we relate our work 
to that of other authors, and in particular we try to meet Mrs Trustrum’s (1964) 
criticisms of the boundary conditions upstream. 

We stress that our work is mathematical. We have not re-examined the 
mechanical postulates of the theory, working within the framework of Long’s 
model and its extension (Scorer & Klieforth 1959) to the case of flow with closed 
streamlines, i.e. with rotors. This reveals more about stratified flows, in particular 
about blocking. 

Recent work has shown that Long’s model whereby the governing equation of 
the flow is linear is special in some sense. Benjamin (1966) and Long (1965) him- 
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self have shown that this model permits neither a solitary wave nor a hydraulic 
jump. However, these are properties of the flow at large, relating the flow far 
upstream with that far downstream. The generation of finite lee waves and 
rotors is a local property, so it is plausible that the qualitative nature of such flow 
near an obstacle does not depend crucially on the special nature of the incident 
stream. 

2. Equation of motion 
We consider two-dimensional steady flow of inviscid incompressible fluid of 

variable density. Par upstream the fluid has velocity U-,(y)i and density 
~ - ~ ( y ) ,  varying with height y in a prescribed way, where the unit vector i is 
horizontal and is in the direction of the x-axis. This stream runs in a long channel 
whose upper boundary is a rigid horizontal plane y = T and whose lower bound- 
ary is the rigid obstacle y = h(x), where h(x) -+ 0 as x - f  ? m. 

Long (1953) used as dependent variable the height far upstream Y - ~ ( X ,  y) of 
the streamline through the point (3, y). He found the equation governing in 
regions where the streamlines come from far upstream. In the special case 

UZ_mp-m = const., dp-mldy = -ppo, (2.1) 

V'y-a +gPP&-rn-Y)/U~aP-a = 0. (2.2) 

r' = m / T ,  h'(x') = nrh(x)/T, 6' = ~ ( y -  y J / T .  (2.3) 

where p and po are constants, he found ywa satisfies the linear equation 

Now let us introduce the dimensionless variables 

In  these variables equation (2.2) becomes the reduced wave-equation, 

where 

is an internal Froude number. For the incident stream to be stable we must have 
/3 2 0 and therefore k2 

Clearly Y - ~ ( X ,  y )  = const. is a streamline, so that the boundary conditions on 
the top and bottom of the channel are 

0. 

6'= 0 for y' = n, 

6' = Id@') for y' = h'(z'). 

In  $ 3  we shall apply the condition that there are no waves far upstream. 

tum in the waves downstream, can be shown by a short calculation to be 
Finally we note that the wave resistance, which arises from the flux of momen- 

for the special case (2.1). 
23-2 
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3. The upstream boundary condition 
We have seen that we have to solve the reduced wave equation, and so seek 

to apply the well-established techniques of diffraction theory to the present 
problem. However, many of these techniques depend intimately on the radia- 
tion condition (cf. Noble 1958, p. 27) and therefore cannot be applied directly. In 
this section we show what the lee-wave condition means mathematically, and in 
the next we show how it can be satisfied if we can solve a certain finite set of 
classical diffraction problems. Not only will this open the problem to well-known 
techniques, but it also enables us to think physically about the situation, since 
there is a reliable physical picture of a diffraction problem, even when a detailed 
mathematical solution is not available. 

We first consider a channel with no obstacle present, that is with h(x) = 0. (We 
drop the dashes from dimensionless quantities henceforth.) Let 6(x,  y) be any 
solution of the equation 

V26+k2S = 0 (3.1) 

with s = 0 (y = 0, 7r). (3.2) 

6 = C &(x) sinny, (3.3) 

where d2S,/dx2+(k2-n2)6, = 0. (3.4) 

By Fourier analysis it follows that 
m 

n=l 

Clearly a lot depends on the sign of (k2  - n2). If 0 6 k < 1, then for each value 
of n equation (3.4) has exponential solutions, 

8, = A~exp{(n2-k2)!zX}+Anexp{- (n2-k2) tx} ,  (3.5) 

where A;, A ,  are arbitrary constants. There is no solution bounded in the whole 
channel other than S = 0; indeed, this is why there is no solitary wave for this 
model (Long 1965). The structure of the flow is similar to that in the case k = 0 
of potential flow. In  hydraulic language, the flow is supercritical when k < 1. 

If K < k < K + 1 for some positive integer K ,  equation (3.4) also has K solu- 
tions of sinusoidal type, 

8, = A;sin{(k2-n2)ax)+Ancos{(k2-n2)ax} (1 < n < k). (3.6) 

These are stationary waves, and in hydraulic language the flow is subcritical. 
The cases where k is an integer are singular, and correspond to wave-guide 

resonance between the walls y = 0 , ~ .  In hydraulic language, the flow is critical. 
We can, by analogy, anticipate that there will be no steady flow in these cases, 
so that we can specifically exclude them by demanding that k be not an integer. 

This analysis of the unobstructed channel throws light on that of the channel 
obstructed by a finite obstacle which has h(x) = 0 for 1x1 > L. (This assumption 
that h(x) is of compact support is not necessary, for all we need is that h(x) -+ 0 
sufficiently rapidly as x+ 00, but it is convenient to make it to simplify the 
formulation.) The above analysis then applies for 1x1 > L;  for 1x1 < L we must 
find the general solution by other means and match along the lines x = _+ L. 
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If 0 < k < 1, the obvious requirement that 6 be bounded means that A: = 0 
(x > L)  and A ,  = 0 (x < -L). These severe restrictions on the form of the solu- 
tion lead us to anticipate that there is a unique bounded solution when 0 < k < 1 ; 
indeed, we know from potential theory that this is true when k = 0. The unique# 
ness of the solution for 0 < k < 1 can be proved by standard methods (cf. Couran- 
& Hilbert 1953) when h(x) 2 0. Thus the case 0 < k < 1 closely resembles the 
harmonic case k = 0, and we need no extra boundary conditions. We should 
expect, by analogy with supercritical flow in hydraulics, that the wave resistance 
is zero. In  fact this follows from equation (2.8) and the disturbance’s vanishing 
exponentially a t  infinity. 

If k > 1, we are on less familiar ground. Following Long (1953), we take the 
solution free of waves far upstream of the obstacle; that is, we require 

A, ,A;=O (x< -L, l < n < K ) .  (3.7) 

Two questions a t  once arise. Does a solution exist at  all? If it does, are conditions 
(3.7) enough to make it unique? Long (1955, p. 344) suggested that conditions 
(3.7) could be too restrictive, and that if the obstacle were too high no solution at  
all could be found. This is plausible, and offers a dynamical rather than an ener- 
getic explanation of blocking. However, Long’s argument implicitly assumes that 
S is regular not only in h(x) < y < n but also in 0 6 y < h(x), and this assumption 
may be false. To see this, we recall that Yih (1960) has constructed obstacles by 
placing dipoles in the region 0 < y < h(z). Our original aim was to place this 
result of Long on a firmer footing, but instead we shall, in 3 4, show it to be mis- 
taken. 

4. Reduction to a set of diffraction problems 
We want to find a function S(x, y) which satisfies the reduced wave equation 

V2S+ k2S = 0, (4.1) 

S =  0 for y = n, 6 = h(x) for y = h(x), (4.2) 

(4.3) 

(4.4) 

the boundary conditions on the rigid walls, 

and the conditions at infinity, 

Sis bounded as x - f  +a, 
6-f 0 exponentially as x + - 03. 

Let us consider the related problem of finding the solution a(x, y, t )  of the 
scalar wave equation 

which satisfies the conditions 
(V2- a2/at2)6 = 0 

S =  0 for y = n, 

8 = h(x)eikt €or y = h(x). 

In  physical terms of an acoustic problem, 13 might now be the pressure in a gas 
filling the channel with a ‘soft’ top (one on which the pressure is constant) and a 
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constructed bottom y = h(x) on which the pressure is a prescribed small harmonic 
function of time. Then the assumption of the time factor eikt for S(x, y, t) leads to  
the problem (4.1), (4.2), but with conditions (4.3), (4.4) replaced by the Sommer- 
feld radiation condition. Continuing the solution of this acoustic problem, we 
suppose K to be the integer such that K < k < K + 1 and introduce the notation 

Then the Sommerfeld radiation condition requires that the solution 8, of this 
emission problem has the properties 

K c a  t- 
S,= C AnWn+ 2 AnEn when x <  -L,  

n=l n=K+1 

K - w  + 
S,= C AAWn+ C AAEn when x >  L, (4.7) 

n=l n=K+1 

for some constants A,, Ah. If we consider S, in the light of conditions (4.3), (4.4) 
we see that it is at  once too free and too restrictive. It has waves 

in the region x < - L where they are forbidden by (4.4). On the other hand, the 
radiation condition eliminates W,, which represents incoming radiation, and 
condition (4.3) only requires boundedness for x > L. Without violating condition 
(4.3), we can place a wave generator at x = + 03 to produce a linear combination 

t 

K t  
C EmWn 

n=l 

of incoming radiation for x > L. These waves will impinge on the constriction 
and be both reflected and transmitted. We aim to choose the constants en (that 
is, to adjust the wave generator) so that the transmitted radiation just cancels 
the emitted radiation K 

AnWn where x < -L. 

More precisely, we consider K reflexion problems for which we seek solutions 

n= 1 

&p)(n = 1,2, ..., K )  of the reduced wave equation (4.1) and the conditions 

Sjn) = o for y = ?T, 

&p)= 0 for y = h(x), 
t 

N Wn + outgoing radiation as x+ + 00, (4.10) 

Sjn) - outgoing radiation as x+ -00. (4.11) 

These K solutions Sp) have the properties 

(4.12) 

c K  + a  + 
sp  = wn+ I: cplq.+ 2 C,FEr when x > L. (4.13) 

r=l  r = E + l  
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Clearly, if we can choose the constants en so that 
K +  

'n'w, + c A,W, = 0, (4.14) 
n=l 5 %( r=l 5 Dr -1 r=l 

K 

n=l 
then s =  c €msp)+se 
will satisfy the lee-wave problem (4.1)-(4.4), which we have been aiming to solve. 
So we must now examine whether this procedure will work. 

M7e shall assume, on physical grounds, that solutions 8, and Sp) to the emission 
and K reflexion problems exist. But are these solutions unique? It is easy to see 
that they are not unique if and only if eigensolutions for the channel exist; that 
is, there exist functions Ssatisfying (4.1), (4.8), (4.9) and the additional condition 

6+0 as X + S C Q .  (4.15) 

The existence of eigensolutions for a domain of given shape is a deep question (cf. 
Muller 1957) and we shall not try to answer it rigorously. However, because an 
eigensolution represents radiation trapped by an obstacle, it seems unlikely on 
physical grounds that one occurs for an obstacle with no cleft. Thus one antici- 
pates that trapping is associated with an obstacle having a cavity with a narrow 
outlet, that is an obstacle whose normal somewhere makes more than a right 
angle with the vertical. On these grounds we assume uniqueness of our solution. 

Since the functions W, are linearly independent, equation (4.14) is equivalent 
to the system of equations 

c 

K 

n=l 
enD:n)+Ar = 0 (r = 1,2, ..., K) .  (4.16) 

Therefore the success of our method, and hence the existence of a solution of the 
lee-wave problem (4.1)-(4.4), is equivalent to the solubility of this system (4.16), 
granted the existence of Se and SF). Thus the necessary and sufficient condition 
for the problem (4.1)-(4.4) to have a solution is that 

det (Din)) .I. 0. (4.17) 

If a solution exists it will, under our assumption, be unique. 
The physical significance of condition (4.17) is seen most clearly in the case 

K = 1 when there is only one wave-like solution possible at infinity. Then con- 

dition (4.17) gives Dp) =+ 0, (4.18) 

that is the transmission coefficient of the constricted channel does not vanish. 
This seems to be obvious physically, even if h,,, is only slightly less than 7 ~ .  We 
confirm this by actual calculation in a special case in $6. For K > 1, condition 
(4.17) implies that no linear combination of incoming radiation can be totally 
reflected. 

5. Dipole solution 
We shall see that formidabIe difficulties stand in the way of an explicit solution 

of the wave-guide diffraction problems posed in the last section. Before consider- 
ing the simplest such problem in $ 6  we have, at  the suggestion of Dr L. E. 
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Fraenkel, considered the disturbance to the flow caused by a dipole in the bottom 
of the channel. Our analysis is similar to that Fraenkel (1956) used for rotating 
fluids. Our problem has also been proposed by Yih (1960, p. 170). Its analogy in 
three dimensions for an open channel (T = co) has been solved by Crapper (1959). 

We regard the solution analytically, that is as a fundamental solution rather 
than as a practical solution for a real dipole. Thus we consider a solution of the 
vorticity equation (4.1) which has a prescribed dipole singularity rather than 
solutions for dipoles emitting various distributions of density and vorticity. The 
solution can then be used to give the flow over any obstacle that happens to  
coincide with any of the streamlines. This inverse method of finding y = h(x) to 
fit the solution 6(x, y) has the grave disadvantage that the shape and size of the 
streamlines change as the internal Froude number k2 changes-whereas the chief 
interest is how the flow over a prescribed obstacle changes with k2. Nevertheless, 
the dipole solution is not without interest and does give some information as to  
the drag and to the nature of the flow at large k2. 

A solution of the reduced wave equation (4.1) representing a dipole at  the 
origin with horizontal axis is 

6 = &ikp sin BHjl)(kr), 

where r = (x2 + y2)i, 8 = tan-l(y/x) and p is any real constant. The choice of the 
Hankel function is dictated by the radiation condition; however, relaxing 
this condition on the solution does not affect either the singularity at  the origin 
or the final real solution, which are our concern here. In  fact this dipole solu- 
tion 6(x, y) behaves like p&(x) on y = 0; where 6(x) is the Dirac delta-function. 
Thus, to  find the disturbances to the flow with this dipole placed on the channel 
floor a t  the origin, we have to solve the following problem: 

V26+k26 = 0 (r =l= O ) ,  

6 = 0 for y = n-, 

6 = p6(x)  for y = 0, 

6 bounded as x+ + 00, 

6+0 as x+--03. 

This lee-wave problem can be solved by the method described in the last section. 
However, it is such a simple example that it is possible to satisfy conditions (5.4), 
(5.5) directly by use of a method of Lamb (1932, §$242-6) for surface waves. 

It can be seen that 
sinh A ( n  - y) 

6(x,y) = - eiux - da kSr sinhhn- 

satisfies the equation (5.1) and the boundary conditions (5.2), (5.3) where? 
h E (a2 - k2)t and the contour I' goes somehow from the left end to the right end 
of the real a-axis in the complex a-plane. When y + 0 or n-, singularities occur as 
simple poles at the zeros of sinh An-, i.e. at a = k ( k 2 -  n2) = rt: a,, & a2,.  .., 

@,(real), f a,,,, . .. (pure imaginary). Thus boundary conditions 
To make h single-valued we may place a cut between the branch points 01 = - k and 

a = + k and require that h be positive on the real a-axis where a > k. 
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(5.4), (5.5) can be satisfied by taking I' just below the real axis in the a-plane. 
Lamb's method is to evaluate S by the calculus of residues, by closing I? at infinity 
in the upper half-plane for x > 0, and in the lower half-plane for x < 0. In  this 
way one can show that 

sinnyexp{n2-k2)tx} 
(1 - k2/n2)4 

when x < 0, 

sin ny sin ((k2- n2)+x} 
(k2/n2- 1)4 

sinnyexp{-(n2-k ) 
when x 3 0. 

p1=K+l (1 - k2/n2)4 ""I 
(5.7) 

It is interesting to note that the problem could almost as easily be solved by 
the method of $ 5 .  We have only to solve the emission problem because, in this 
case, there is no reflexion and we have BJn) = S,,, the Kronecker delta. Further 
note that when k2 = 0 summation of the series (5.7) gives the potential solution 

S(x, y) = psiny/[Zn(coshx-cosy)]. 

We can use the solution (5.7) to calculate the drag on the dipole. Use of formula 
(2.8) shows that 

Thus the drag is a step function of k, and increases like k3 as k-tm. This also 
shows that the limit of D is independent of T as T -+ 00 for fixed pT2, in which 
limit the dimensional solution near the dipole is independent of T. 

We can use this solution to construct flows over obstacles by replacing stream- 
lines by solid surfaces. In  general this requires numerical computation of (5.7) 
and, moreover, the shape of the obstacle depends on Ic. If, however, r = (x2+ y2)9 
is very small Sis dominated by the dipole singularity, so that 

S - Qikp sin BHp(kr)  as r + 0. 

If, in addition, we let kr + 0, then 
S - pylnr2. (5.9) 

Now the boundary condition (4.2) on a rigid surface y = h(x) is that 

S =  h(x) for y = h(x). 

Clearly this condition is satisfied on the small circle r = a by the approximate 
solution (5.9) if we choose p = nu2. This result is independent of k so long as k < 1. 
Thus we have the disturbance caused by a small semi-circle of fixed size. If A is 
the dimensional radius, then a = An/T and formula (5.8) shows that the drag is 

We have evaluated with an electronic digital computer the solution (5.7) for 
p = 1, k2 = 8 , 2  and 12. Some streamlines for the three cases are plotted in figures 
1 , 2  and 3 respectively. Figure 1 depicts a supercritical flow with no lee waves, the 
flow being symmetric about the verticaI line x = 0; the dipole causes only a slight 
disturbance of the stratified incident stream. Figure 2 depicts a subcritical flow 
with one lee wave ( K  = 1); the effects of stratification are disturbing the incident 

n 4 ~ 4 p - m  u: K(K + 4) (K  + 1 )I 1 2 ~ 3 .  
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stream quite significantly. Figure 3 depicts a subcritical flow with three lee waves 
superposed ( K  = 3); there are several regions of closed streamlines, in some of 
which the streamfunction takes values beyond those taken far upstream in the 
channel; this case indicates that the steady flow becomes very confused as k 
increases, and probably develops into turbulence. 

Y 

1 I I I I I I r 
-2 - 1  0 1 2 3 4 

FIGURE 1. Flow past a dipole: ,u = 1, k2 = +. 
Y 

n 

y - m  = 2.5 

0.5 

I I I I I I I x 
-2 -1 0 1 2 3 4 

FIGURE 2 .  Flow past a dipole: ,u = 1, k2 = 2 .  

-2  -1 0 1 2 3 4 

FIGURE 3. Flow past a dipole: ,u = 1, k2 = 12. 
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As a postscript to this section we consider the solution when k is an integer. 
There the simple poles & a, coalesce at  the origin in the a-plane to form a double 
pole. On evaluation of the residue there, one finds a term which is unbounded like 
xsinKy as x+ +a. Thus the problem (5.1)-(5.4) has no solution because there 
is resonance between the walls y = 0, 7~ of the wave-guide. 

6. The disturbance due to a vertical strip 
In  the previous section we have examined the disturbance created by a line 

dipole on the bed of the channel. We saw that, though we could construct a flow 
past any rigid obstacle coincident with a streamline, the shape of the obstacle 
could not be prescribed in advance and, more seriously, depended on the value 
of the internal Froude number. Here we wish to consider the waves set up by a 
prescribed obstacle so that we can see how the flow pattern varies with k.  As we 
have shown (in 8 4) that the determination of the flow field under the ‘no-waves- 
upstream’ boundary condition can be reduced to the solution of two types of 
classical wave-guide diffraction problems, we can seek help in the well-established 
theory of wave-guides (cf. Jones 1964). For an obstacle of general shape in the 
wave-guide, diffraction problems are quite intractable unless k is small, in which 
case an expansion about the (in principle !) known solutions of Laplace’s equation 
in the wave-guide can be used. Examples of this method are given by Lamb 
(1932). In our case k can be large, however. To make any progress it seems best to 
simplify the obstacle, so we have decided to confine our attention to an obstacle 
in the form of a vertical strip. More precisely, if y = 0 and y = n- are the channel 
walls, the obstacle is the strip x = 0 (0 < y < d < n-). Several approximate 
methods to find the reflexion at such an obstacle (called a capacitative iris) in a 
wave-guide have been developed, and the special case with d = in has been 
solved exactly. (Jones (1964) gives a full account and bibliography.) 

We first solved this problem by explicitly splitting it up into a superposition of 
the emission problem and K transmission problems, and then computed stream- 
lines in various special cases below. However, Mrs K. Trustrum has suggested a 
synthesis of these problems which is equivalent but somewhat shorter and 
simpler, so this is the method we present below. We seek S(x, y) such that 

VV+k2S = 0; I 
6 = 0  on y = O , n ,  I c 6 = y  on x = O ,  O < y < d ,  

6+0 as x+ -00, 6 bounded as x+ +00.j 
In  the usual way, we may satisfy the equation and all the boundary conditions 
except those at x = 0 by taking 

K 

1 = 1  

6 = - 2 C {A, sin h,x + B, cos hq} sin ry  

00 + X A,exp(-hp)sinry (x 2 0, 0 < y < n), 
r = K + l  

co 
6 = I: Aiexp (h,x) sinry (x < 0, 0 < y < n), 

r = K + l  
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+(k2-rz )+  (1 < r < K ) ,  
A,={ + (r2- kZ)* ( K +  1 < r ) .  

The boundary conditions at x = 0 are that Sand aS/ay be continuous for d 6 y < n 
and that 6 = y for 0 < y < d. Therefore we have 

A; = A ,  

B, = 0 

( r  2 K +  l), 

( r  < K ) ,  
m 

A,sinry = y (0 < y < d) ,  
r=K+l 

4) m W 

- 2 x  h,A,sinry- h,A,sinry = h,A,sinry (d Q y < n). 
7=1 r=K+1 r=K+l 

In  summary, we have a solution 
K m 

S =  -(l+signx) 2 A,sinh,xsinry+ c A,exp(-h,lxl)sinry 
r = l  r=K+l  

(0 < y < i ~ ,  --OO < x < a), (6.3) 

where 
m 

r=K+l  
x A,sinry = y (0 < y < d) ,  

(d < y 6 n). 
m 

r = l  
h,A,sinry = 0 

(6.4) 

Unfortunately, dual Fourier series of the type (6.4) cannot in general be solved 
in closed form to yield the unknown coefficients A,. The present pair have been 
solved (Tranter 1959) only in the case of a harmonic field (k = 0). Instead, we 
shall convert equation (6.4) into a single integral equation and then solve that 
integral equation by a method described by Jones (1964). We do not know the 
values of the sum 

g(3) = C h,A,sinry for 0 Q y < d;  

suppose then that we take this function as our unknown rather than the co- 
efficients A,. Therefore, using the second of equation (6.4) and assuming that 
g(y) satisfies the conditions of Fourier’s theorem,? we have 

m 

r=l 

g(y’) sinry‘ dy‘. 
nh, 

Substitution of (6.5) into the first equation of (6.4) now yields the integral equa- 
tion 

f Clearly g(y) = - (a&/az),=,, so we anticipate a singularity like Iy -dl-* near y = d. 
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where the kernel 
m 

r=K+1 
K(y,y‘) = (2/n) C AFlsinrysinry’ 

m 

r=l 
= (Z/n) C (A;l- rl) sin ry  sin ry‘ 

365 

(6.7) 

K 

r=l  
- (Z/n) A;l sin ry  sin ry’ + (l/n) loglsin i ( y  + y’)/sin $(y - y‘) I. (6.8) 

Owing to the presence of A,, the kernel (6.7) cannot be expressed in closed form 
except in the case E = 0. As r +coy A,l- r-l = O(r-3), so the infinite series of (6.8) 
converges uniformly, whilst the latter term is a series summed to reveal nothing 
worse than the logarithmic singularity of the kernel at  y = y‘. Thus the integral 
equation (6.6) is regular. 

The method described by Jones is to expand g(y) and y in terms of the complete 
set of orthogonal functions, (sin (sny/d)) for each integer s. Thus we write 

(0 < y 6 d )  for gs to be determined, where 

i d  (rd = sn). 

Now integral equation (6.6) gives 

where 

m 00 

C gsKs,sin(tny/d) = &sin(tny/d) (0 < y < d )  
s,t=1 t = l  

m 

Ksl = Pin) x A, lP ,P , t .  
V=K+l 

Equating coefficients of the orthogonal functions, we deduce that 
m x gsK, = & (t = 1,2,  ...). 

s, t = l  

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

As it stands, this infinite system is no more tractable than the integral equation 
(6.6) from which it was derived. However, we can solve it for gs approximately 
but effectively by truncation-that is, we assume gM+2, ... = 0 and keep 
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only the first M of equations (6.15) for some positive integer M .  Then we find 

4 = ( 2 h - k )  c gses. (6.16) 

We remark how slowly the series (6.16) converges. For we know that g(y) be- 
haves like [ y - d l *  near y = d and from this that gs = O(s-4) as s-+co.t The 
definition (6.13) shows that P, = O(8-l) as s+co for fixed r. Thus (6.16) con- 
verges no faster than terms of order s-%, and we cannot easily attain great 
accuracy by the truncation method. 

Of course, the calculations need an electronic digital computer, even for small 
values of tche number M of terms before truncation, since the elements of the 
matrix K,, are themselves defined by an infinite series. 

However, before describing our numerical results, we bring out the mathe- 
matical implications of there being no waves in the upstream region x < 0. We 
have 6 = y for x = 0, 0 < y 6 d ,  so that (6.3) gives 

that equation (6.5) gives M 

s=1 

It is remarkable that the flow can adjust itself to satisfy these K conditions. In- 
deed, if we assume that 6(0, y) is bounded independently of d in the interval [d, n], 
we can show that when d is sufficiently close to n the conditions cannot be satis- 
fied. In  other words, we anticipate large values of 6 when the gap between the 
top of the obstacle and the channel roof is small. Thus regions of closed stream- 
lines, i.e. rotors, occur. 

We have seen that waves, and sometimes rotors, occur downstream of the 
barrier. However, upstream the disturbance is a sum of terms, each of which is 
exponential in x. The exponential which decays least rapidly as x+ - co is 

exp{[(K+ 1)2- kZ]&x}. 

k = K + l - E ,  

Now K < k < K +  1, so that we can write 

where 0 < E < 1. So, for large k, the disturbance upstream tends to zero like 
exp { [ ~ E ( K  + l)]*x}. Therefore, when the incident stream has a large k2, the dis- 
turbance upstream is very small where x $- k-*. This means that streamlines are 
undeflected until they enter a ' boundary layer ' of thickness k-4 on the front side 
of the obstacle. 

The computer we used could rapidly invert matrices as large as 150 x 150, so 
we took M = 150 in all our computations. We checked the accuracy of the co- 
efficients A ,  by computing both sides of the first of equations (6.4) for a range of 
values of y. If y was not close to d, the two sides of the equation differed by less 
than 1% for most of the cases considered. However, as y approached the value d, 
the discrepancy increased. This behaviour is probably due to the singularity of 

s-t = a, sin nz (0 < z < n), 

t In fact, if we put 
W 

n = l  

we can show that a, = (2/7rn)* + O(n-') as n -+ co. 
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(aS/ay)z=,, at y = d, which is associated with the edge of the obstacle. The Fourier 
series converges very slowly near such a singularity. 

Once the coefficients A, are determined the streamlines can be computed from 

(6.18) the relation 

where y-OO is the height of the streamline at upstream infinity. In view of the 
results of the test applied to A,, these streamlines will be accurate except near 
the tip of the obstacle. 

Y-a(x,Y) = Y-00, 

y =r 

y - =  = 2 n / 3  

K 

r = l  
D / P - ~  U2_, = (k2-r2)A: = 0.098 with A ,  = 0.279. 

y = n  

y - ,  = 2n/3 - , \ \  

-2 -1 0 I 2 3 4 

FIGURE 5. Flow past a vertical wall: d = in, k = 2.5. The drag is such that 
DIP-, U Y ,  = 0.88 with A,  = 0.221, A ,  = 0.526. 

The results for d = in- and k = 1.5, k = 2-5, k = 3.5 and k = 4-5 are shown in 
figures 4-7. Only streamlines coming from upstream infinity are plotted, for the 
sake of clarity. The formation of detached rotors with strong jets threading in 
between them is quite striking. There is, of course, a street of rotors extending to 
downstream infinity in these cases. For d = in- and k = 1.5 we see from figure 8 
that, as we anticipated, a rotor has formed and the jet is quite strong. For d = &r 
and k = 2-5 (see figure 9) the jet is very strong and winds through the rotors in a 
complicated way. 

An unexpected feature is the separation of the flow from the bottom of the 
channel ahead of the obstacle in some cases. 
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For d = 4. and k = 3.5 the discrepancies when the computed A, were tested in 
(6.4) were typically a%, and at  d = Qn and k = 4.5 they were typically 20%, so 
we shall not reproduce these two cases, which need a larger value of M .  

y =n 

-2 -I 0 1 2 3 4 

FIGURE 6. Flow past a vertical wall: d = $m, k = 3.5. The drag is such that 
Dip-, U 2 ,  = 8.0 with A ,  = 0.345, A ,  = 0.641, A ,  = 1.00. 

v = n  

FIGURE 7 .  Flow past a vertical waIl: d = &T, k = 4.5. The drag is such that 
D/p-, U 2 ,  = 91.0 with A ,  = 0.759, A,  = 1.35, A ,  = 1.70, A,  = 2.03. 

y = n  

y - m  = 4n/9 

I I I I I X 

-2 -1 0 1 2 3 4 

FIGURE 8. Flow past a vertical wall: d = +a, k = 1.5. The drag is such that 
DIP-, UZ_, = 9.1 with A ,  = 2.69. 

7. Conclusions 
In  general we have excluded consideration of any resonance from our work. 

Thus, provided that there is no resonance and that no lower bound is placed 
on the pressure, we believe the discussion of 0 3 implies that a steady flow free of 
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v = n  

-2 - I  0 1 2 3 4 

FIGURE 9. Flow past a vertical wall: d = +r, k = 2.5. The drag is such that 
Dlmp-, U?, = 2100 with A ,  = 14.8, A ,  = 20.0. 

upstream waves exists in the channel with arigid lid, whatever the internal Froude 
number and size of the obstacle. In  short, we find that there is no critical value 
of k2 for blocking. Blocking seems to be always associated with a pressure (or, 
equivalently, an energy) restriction and not with the non-existence of any steady 
solution. 

Also in Q 3 we pointed to a possible omission in Long’s argument for a critical 
internal Froude number. However, a recent paper by NIrs K. Trustrum (1964) 
supports Long’s conclusion. She linearized the equations of unsteady flow, re- 
placing the inertial term u . Vu by an ‘ Oseen ’ advection term Ui. Vu, where U is 
a constant. This seems a reasonable procedure, and Mrs Trustrum points out that 
it is rigorously valid for slightly porous obstacles. This mathematical simplifica- 
tion enables unsteady flows to be examined so that, by starting the flow from rest 
in an initial-value problem, the nature of the flow far upstream can be deduced. 

The vertical dependence of the velocity field is represented as a Fourier inte- 
gral, and the evolution in time of a single component is examined. Its fate is 
shown to depend on its component internal Froude number, gph2/47r2u2 where h 
is the wavelength of the y-dependence. Analysis of the Laplace transform of the 
equations of motion show that if this component number is greater than unity 
the corresponding Fourier component does not tend to zero at  upstream infinity 
-that is to say, it blocks the flow. 

In  the next stage of her argument, Mrs Trustrum’s model diverges from ours. 
Mathematical difficulties prevent the treatment of unsteady flow over an 
obstacle which fills only part of the channel, so the velocity distribution is speci- 
fied on the entire cross-section x = 0 instead. In  general this distribution will 
involve all Fourier components, and therefore all wavelengths h will arise. Thus 
a disturbance of the flow at x = - co will remain as t --f co for any value of the 
overall Richardson number-an even stronger conclusion than Long’s. However, 
for a distribution of horizontal dipoles on the cross-section x = 0 this upstream 
influence vanishes. Indeed, our solution Q 5 for the dipole can come directly from 
Mrs Trustrum’s analysis. Also, her inverse method gives no streamline, other 
than y = 0, IT, fixed for all time. 

When the domain of flow is the fixed half-strip (x < 0, 0 < y < n-, t 2 0) and 
24 Fluid Mech. 28 
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the velocity is physically specified on the whole cross-section x = 0 this argument 
is applicable, and Mrs Trustrum obtained qualitative agreement with Debler’s 
(1961) experiments on flow into a line sink in a semi-infinite closed channel. How- 
ever, for a partly constricted infinite closed channel our analysis suggests that the 
flow adjusts itself to remove those Fourier components which do not decay as 
x-+ -00. This is seen most clearly in the case of the straight barrier in $6.  The 
Fourier components which do not decay as x - f  -co are proportional to sinny 
(1 6 n 6 K ) .  The boundary conditions on the barrier imply that S(0, y) has the 
values y on the wall (0 6 y < d )  but its values in the gap (d  < y < n-) are subject 
only to matching requirements. We have constructed solutions S(x, y) which 
decay exponentially as x + - 00, and this means that the value of 6 in the gap has 
adjusted itself so that S(0, y) is orthogonal to sinny in the whole interval [0,7r]. 
This freedom of 6(0, y) in the gap is crucial, and we suggest that Mrs Trustrum’s 
conclusions may not hold for flow past a partial constriction. 

It is a pleasure to thank Professor D. S. Jones for his advice on diffraction 
theory; Mr L. E. Fraenkel for suggesting that we write 3 5; Professor M. H. Rogers 
for his guidance and Miss C. Faithful1 and Miss P. Virgo for their help with the 
numerical computation of $§5,6; and Mr B. Goldstein of the Institute for Space 
Studies for his skilful programming of the bulk of the computations of $6. 
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